博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Machine Learning Techniques -6-Support Vector Regression
阅读量:6159 次
发布时间:2019-06-21

本文共 1317 字,大约阅读时间需要 4 分钟。

6-Support Vector Regression

For the regression with squared error, we discuss the kernel ridge regression.

 With the knowledge of kernel function, could we find an analytic solution for kernel ridge regression?

 Since we want to find the best βn

 

However, compare to the linear situation, the large number of data will suffer from this formation of βn.

Compared to soft-margin Gaussian SVM, kernel ridge regression suffers from the operation of  βn through N:

That means more SVs and will slow down our calculation, a sparse βn is now we want.

Thus we add a tube, with the familiar function of MAX, we prune the points at a small |s - y|.

Max function is not differentable at some points, so we need some other operation as well.

These operations are about changing the appearance to be more like standard SVM, in order to deal with the tool of QP.

wTZn + b = wTZn +w0, which is separated as a Constant.

we add a factor to descrip the violation of margin, and use upper and lower bound to keep linear formation.

Our next task : SVR primal -> dual

 As usual, we get two common constrain from the gredient to w and b, the dual formation is as followed:

 

It can also be proved that we could get a sparsity of beta in the tube we defined:

If we compare these methods togather:

 

转载于:https://www.cnblogs.com/windniu/p/4762749.html

你可能感兴趣的文章
简洁优雅地实现夜间模式
查看>>
react学习总结
查看>>
在soapui上踩过的坑
查看>>
MySQL的字符集和字符编码笔记
查看>>
ntpd同步时间
查看>>
Maven编译时跳过Test
查看>>
Spring Boot 整合Spring Security 和Swagger2 遇到的问题小结
查看>>
Apache通过mod_php5支持PHP
查看>>
java学习:jdbc连接示例
查看>>
Silverlight 如何手动打包xap
查看>>
禁用ViewState
查看>>
Android图片压缩(质量压缩和尺寸压缩)
查看>>
nilfs (a continuent snapshot file system) used with PostgreSQL
查看>>
【SICP练习】150 练习4.6
查看>>
HTTP缓存应用
查看>>
KubeEdge向左,K3S向右
查看>>
DTCC2013:基于网络监听数据库安全审计
查看>>
CCNA考试要点大搜集(二)
查看>>
ajax查询数据库时数据无法更新的问题
查看>>
Kickstart 无人职守安装,终于搞定了。
查看>>